Mathematical Logic

EXERCISE 1.1 [PAGES 2 - 3]

Exercise 1.1 | Q 1 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

A triangle has 'n' sides

Solution: It is an open sentence. Hence, it is not a statement.

[**Note:** Answer given in the textbook is 'it is a statement'. However, we found that 'It is not a statement'.]

Exercise 1.1 | Q 2 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The sum of interior angles of a triangle is 180°

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 3 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

You are amazing!

Solution: It is an exclamatory sentence. Hence, it is not a statement.

Exercise 1.1 | Q 4 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Please grant me a loan.

Solution: It is a request. Hence, it is not a statement.

Exercise 1.1 | Q 5 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $\sqrt{-4}$ is an irrational number.

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 6 | Page 2

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $x^2 - 6x + 8 = 0$ implies x = -4 or x = -2.

Solution: It is a statement which is false. Hence, it's truth value if F.

Exercise 1.1 | Q 7 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

He is an actor.

Solution: It is an open sentence. Hence, it is not a statement.

Exercise 1.1 | Q 8 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Did you eat lunch yet?

Solution: It is an interrogative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 9 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Have a cup of cappuccino.

Solution: It is an interrogative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 10 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $(x + y)^2 = x^2 + 2xy + y^2$ for all x, $y \in R$.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 11 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Every real number is a complex number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 12 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

1 is a prime number.

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 13 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

With the sunset the day ends.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 14 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

1!=0

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 15 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

3 + 5 > 11

Solution: It is a statement which is false. Hence, it's truth value is F.

Exercise 1.1 | Q 16 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number π is an irrational number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 17 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

 $x^{2} - y^{2} = (x + y)(x - y)$ for all x, $y \in R$.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 18 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number 2 is the only even prime number.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 19 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Two co-planar lines are either parallel or intersecting.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 20 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

The number of arrangements of 7 girls in a row for a photograph is 7!.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 21 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Give me a compass box.

Solution: It is an imperative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 22 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Bring the motor car here.

Solution: It is an imperative sentence. Hence, it is not a statement.

Exercise 1.1 | Q 23 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

It may rain today.

Solution: It is an open sentence. Hence, it is not a statement.

Exercise 1.1 | Q 24 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

If a + b < 7, where $a \ge 0$ and $b \ge 0$ then a < 7 and b < 7.

Solution: It is a statement which is true. Hence, it's truth value is T.

Exercise 1.1 | Q 25 | Page 3

State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.

Can you speak in English?

Solution: It is an interrogative sentence. Hence, it is not a statement.

EXERCISE 1.2 [PAGE 6]

Exercise 1.2 | Q 1.1 | Page 6

Express the following statement in symbolic form.

e is a vowel or 2 + 3 = 5

Solution: Let p : e is a vowel.

q: 2 + 3 = 5

The symbolic form is $p \lor q$.

Exercise 1.2 | Q 1.2 | Page 6

Express the following statement in symbolic form.

Mango is a fruit but potato is a vegetable.

Solution: Let p : Mango is a fruit.

q : Potato is a vegetable.

The symbolic form is $p \land q$.

Exercise 1.2 | Q 1.3 | Page 6

Express the following statement in symbolic form.

Milk is white or grass is green. **Solution:** Let p : Milk is white. q : Grass is green. The symbolic form is p v q.

Exercise 1.2 | Q 1.4 | Page 6

Express the following statement in symbolic form.

I like playing but not singing.

Solution: Let p : I like playing.

q: I do not like singing.

The symbolic form is $p \land q$.

Exercise 1.2 | Q 1.5 | Page 6

Express the following statement in symbolic form.

Even though it is cloudy, it is still raining.

Solution: Let p : It is cloudy.

q : It is still raining.

The symbolic form is $p \land q$.

Exercise 1.2 | Q 2.1 | Page 6

Write the truth value of the following statement.

Earth is a planet and Moon is a star.

Solution: Let p : Earth is a planet.

q : Moon is a star.

The truth values of p and q are T and F respectively.

The given statement in symbolic form is $p \land q$.

$\therefore p \land q \equiv T \land F \equiv F$

 \therefore Truth value of the given statement is F.

Exercise 1.2 | Q 2.2 | Page 6

Write the truth value of the following statement.

16 is an even number and 8 is a perfect square.

Solution: Let p : 16 is an even number.

q: 8 is a perfect square.

The truth values of p and q are T and F respectively.

The given statement in symbolic form is $p \land q$.

 $\therefore p \land q \equiv T \land F \equiv F$

 \therefore Truth value of the given statement is F.

Exercise 1.2 | Q 2.3 | Page 6

Write the truth value of the following statement.

A quadratic equation has two distinct roots or 6 has three prime factors.

Solution: Let p : A quadratic equation has two distinct roots.

q: 6 has three prime factors.

The truth values of p and q are F and F respectively.

The given statement in symbolic form is $p \lor q$.

 $\therefore p \lor q \equiv F \lor F \equiv F$

 \therefore Truth value of the given statement is F.

Exercise 1.2 | Q 2.4 | Page 6

Write the truth value of the following statement.

The Himalayas are the highest mountains but they are part of India in the North East.

Solution: Let p : Himalayas are the highest mountains.

q : Himalayas are the part of India in the north east.

The truth values of p and q are T and T respectively.

The given statement in symbolic form is $p \land q$.

$$\therefore p \land q \equiv T \land T \equiv T$$

 \therefore Truth value of the given statement is T.

EXERCISE 1.3 [PAGE 7]

Exercise 1.3 | Q 1.1 | Page 7

Write the negation of the following statement.

All men are animals.

Solution: Some men are not animals.

Exercise 1.3 | Q 1.2 | Page 7

Write the negation of the following statement.

- 3 is a natural number.

Solution: – 3 is not a natural number.

Exercise 1.3 | Q 1.3 | Page 7

Write the negation of the following statement.

It is false that Nagpur is capital of Maharashtra

Solution: Nagpur is capital of Maharashtra.

Exercise 1.3 | Q 1.4 | Page 7

Write the negation of the following statement.

2 + 3 ≠ 5

Solution: 2 + 3 = 5

Exercise 1.3 | Q 2.1 | Page 7

Write the truth value of the negation of the following statement.

 $\sqrt{5}$ is an irrational number.

Solution: Truth value of the given statement is T.

 \therefore Truth value of its negation is F.

Exercise 1.3 | Q 2.2 | Page 7

Write the truth value of the negation of the following statement.

London is in England.

Solution: Truth value of the given statement is T.

 \therefore Truth value of its negation is F.

Exercise 1.3 | Q 2.3 | Page 7

Write the truth value of the negation of the following statement.

For every $x \in N$, x + 3 < 8.

Solution: Truth value of the given statement is F.

: Truth value of its negation is T.

EXERCISE 1.4 [PAGES 10 - 11]

Exercise 1.4 | Q 1.1 | Page 10

Write the following statement in symbolic form.

If triangle is equilateral then it is equiangular.

Solution: Let p : Triangle is equilateral.

q : Triangle is equiangular.

The symbolic form is $p \rightarrow q$.

Exercise 1.4 | Q 1.2 | Page 10

Write the following statement in symbolic form.

It is not true that "i" is a real number.

Solution: Let p : i is a real number.

The symbolic form is ~ p.

Exercise 1.4 | Q 1.3 | Page 10

Write the following statement in symbolic form.

Even though it is not cloudy, it is still raining. **Solution:** Let p : It is cloudy. q : It is raining. The symbolic form is $\sim p \land q$.

Exercise 1.4 | Q 1.4 | Page 10

Write the following statement in symbolic form.

Milk is white if and only if the sky is not blue.

Solution: Let p : Milk is white.

q : Sky is blue.

The symbolic form is $p \leftrightarrow \sim q$.

Exercise 1.4 | Q 1.5 | Page 10

Write the following statement in symbolic form.

Stock prices are high if and only if stocks are rising.

Solution: Let p : Stock prices are high.

q : Stock are rising The symbolic form is $p \leftrightarrow q$.

Exercise 1.4 | Q 1.6 | Page 10

Write the following statement in symbolic form.

If Kutub-Minar is in Delhi then Taj-Mahal is in Agra.

Solution: Let p : Kutub-Minar is in Delhi.

q : Taj-Mahal Is in Agra.

The symbolic form is $p \rightarrow q$.

Exercise 1.4 | Q 2.1 | Page 11

Find the truth value of the following statement.

It is not true that 3 – 7i is a real number.

Solution: Let p : 3 – 7i is a real number.

The truth value of p is F.

The given statement in symbolic form is ~p.

 $\therefore \sim p \equiv \sim F \equiv T$

 \therefore Truth value of the given statement is T.

Exercise 1.4 | Q 2.2 | Page 11

Find the truth value of the following statement.

If a joint venture is a temporary partnership, then discount on purchase is credited to the supplier.

Solution: Let p : A joint venture is a temporary partnership. q : Discount on purchase is credited to the supplier.

The truth value of p and q are T and F respectively.

The given statement in symbolic form is $p \to q.$

 $\therefore p \to q \equiv T \to F \equiv F$

 \therefore Truth value of the given statement is F.

Exercise 1.4 | Q 2.3 | Page 11

Find the truth value of the following statement.

Every accountant is free to apply his own accounting rules if and only if machinery is an asset.

Solution: Let p : Every accountant is free to apply his own accounting rules.

q : Machinery is an asset.

The truth values of p and q are F and T respectively.

The given statement in symbolic form is $p \leftrightarrow q$.

 $\therefore p \leftrightarrow q \equiv F \leftrightarrow T \equiv F$

 \therefore Truth value of the given statement is F.

Exercise 1.4 | Q 2.4 | Page 11

Find the truth value of the following statement.

Neither 27 is a prime number nor divisible by 4.

Solution: Let p : 27 is a prime number.

q: 27 is divisible by 4.

The truth values of p and q are F and F respectively.

The given statement in symbolic form is ~ p \land ~ q.

 $\therefore \sim p \land \sim q \equiv \sim F \land \sim F \equiv T \land T \equiv T$

 \therefore Truth value of the given statement is T.

Exercise 1.4 | Q 2.5 | Page 11

Find the truth value of the following statement.

3 is a prime number and an odd number.

Solution: Let p : 3 is a prime number.

q: 3 is an odd number.

The truth values of p and q are T and T respectively.

The given statement in symbolic form is $p \land q$.

 $\therefore p \land q \equiv T \land T \equiv T$

 \therefore Truth value of the given statement is T.

Exercise 1.4 | Q 3.1 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

 $p \land (q \land r)$ Solution: $p \land (q \land r) \equiv T \land (T \land F)$ $\equiv T \land F$

≡ F

Hence, truth value if F.

Exercise 1.4 | Q 3.2 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

 $(p \rightarrow q) \lor (r \land s)$ **Solution:** $(p \rightarrow q) \lor (r \land s) \equiv (T \rightarrow T) \lor (F \land F)$ $\equiv T \lor F$ $\equiv T$ Hence, truth value if T.

Exercise 1.4 | Q 3.3 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

```
\sim [(\sim p \lor s) \land (\sim q \land r)]
Solution: \sim [(\sim p \lor s) \land (\sim q \land r)] \equiv \sim [(\sim T \lor F) \land (\sim T \land F)]
\equiv \sim [(F \lor F) \land (F \land F)]
\equiv \sim (F \land F)
\equiv \sim F
\equiv T
Hence, truth value if T.
```

Exercise 1.4 | Q 3.4 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

```
(p \rightarrow q) \leftrightarrow \sim (p \lor q)

Solution: (p \rightarrow q) \leftrightarrow \sim (p \lor q) \equiv (T \rightarrow T) \leftrightarrow (T \lor T)

\equiv T \leftrightarrow \sim T

\equiv T \leftrightarrow F

\equiv F

Hence, truth value if F.

Exercise 1.4 | Q 3.5 | Page 11
```


If p and q are true and r and s are false, find the truth value of the following compound statement.

$$[(p \lor s) \rightarrow r] \lor \sim [\sim (p \rightarrow q) \lor s]$$
Solution:
$$[(p \lor s) \rightarrow r] \lor \sim [\sim (p \rightarrow q) \lor s]$$

$$\equiv [(T \lor F) \rightarrow F] \lor \sim [\sim (T \rightarrow T) \lor F]$$

$$\equiv (T \rightarrow F) \lor \sim (\sim T \lor F)$$

$$\equiv F \lor \sim (F \lor F)$$

$$\equiv F \lor \sim F$$

$$\equiv F \lor T$$

Hence, truth value is T.

Exercise 1.4 | Q 3.6 | Page 11

If p and q are true and r and s are false, find the truth value of the following compound statement.

 $\sim [p \lor (r \land s)] \land \sim [(r \land \sim s) \land q]$ Solution: $\sim [p \lor (r \land s)] \land \sim [(r \land \sim s) \land q]$ $\equiv \sim [T \lor (F \land F)] \land \sim [(F \land \sim F) \land T]$ $\equiv \sim (T \lor F) \land \sim [(F \land T) \land T]$ $\equiv \sim T \land \sim (F \land T)$ $\equiv F \land \sim F$ $\equiv F \land T$ $\equiv F$

Hence, truth value is F.

Exercise 1.4 | Q 4.1 | Page 11

Assuming that the following statement is true,

p : Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

Sunday is not holiday or Ram studies on holiday.

Solution: Symbolic form of the given statement is ~ p V~q


```
∴ ~ p V~ q ≡ ~ T V ~ T
≡ F ∨ F
≡ F
```

Hence, truth value is F.

Exercise 1.4 | Q 4.2 | Page 11

Assuming that the following statement is true,

p : Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

If Sunday is not holiday then Ram studies on holiday.

Solution: Symbolic form of the given statement is

≡T

Hence, truth value is T.

Exercise 1.4 | Q 4.3 | Page 11

Assuming that the following statement is true,

p : Sunday is holiday,

q: Ram does not study on holiday,

find the truth values of the following statements.

Sunday is a holiday and Ram studies on holiday.

Solution: Symbolic form of the given statement is $p \land \sim q$

 $\begin{array}{l} \therefore p \land \sim q \equiv T \land \sim T \\ \equiv T \land F \\ \equiv F \\ \text{Hence, truth value is F.} \end{array}$

Exercise 1.4 | Q 5.1 | Page 11

If p : He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

 $\mathbf{p} \leftrightarrow \mathbf{\sim} \mathbf{q}$

Solution: He swims if and only if water is not warm.

Exercise 1.4 | Q 5.2 | Page 11

If p : He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

~ (p ∨ q)

Solution: It is not true that he swims or water is warm.

Exercise 1.4 | Q 5.3 | Page 11

If p : He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

 $\mathbf{q} \rightarrow \mathbf{p}$

Solution: If water is warm then he swims.

Exercise 1.4 | Q 5.4 | Page 11

If p : He swims

q: Water is warm

Give the verbal statement for the following symbolic statement.

q ^ ~ p

Solution: Water is warm and he does not swim.

EXERCISE 1.5 [PAGE 12]

Exercise 1.5 | Q 1.1 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

 $x^2 + 3x - 10 = 0$

Solution: $\exists x \in N$, such that $x^2 + 3x - 10 = 0$

It is true statement, since $x = 2 \in N$ satisfies it.

Exercise 1.5 | Q 1.2 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

3x - 4 < 9

Solution: $\exists x \in N$, such that 3x - 4 < 9

It is true statement, since

 $x = 2, 3, 4 \in N$ satisfies 3x - 4 < 9.

Exercise 1.5 | Q 1.3 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

n² ≥ 1

Solution: \forall n \in N, n² \geq 1

It is true statement, since all $n \in N$ satisfy it.

Exercise 1.5 | Q 1.4 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

2n - 1 = 5

Solution: $\exists n \in N$, such that 2n - 1 = 5

It is a true statement since all $n = 3 \in N$ satisfy 2n - 1 = 5.

Exercise 1.5 | Q 1.5 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

y + 4 > 6

Solution: $\exists y \in N$, such that y + 4 > 6

It is a true statement since $y = 3, 4, ... \in N$ satisfy y + 4 > 6.

Exercise 1.5 | Q 1.6 | Page 12

Use quantifiers to convert the following open sentences defined on N, into a true statement.

3y - 2 ≤ 9

Solution: $\exists y \in N$, such that $3y - 2 \le 9$

It is a true statement since $y = 1, 2, 3 \in N$ satisfy it.

Exercise 1.5 | Q 2.1 | Page 12

If B = {2, 3, 5, 6, 7} determine the truth value of $\forall x \in B$ such that x is prime number.

Solution: For x = 6, x is not a prime number.

 \therefore x = 6 does not satisfies the given statement.

- \therefore The given statement is false.
- \therefore It's truth value is F.

Exercise 1.5 | Q 2.2 | Page 12

If $B = \{2, 3, 5, 6, 7\}$ determine the truth value of

 $\exists n \in B$, such that n + 6 > 12.

Solution: For n = 7, n + 6 = 7 + 6 = 13 > 12

 \therefore n = 7 satisfies the equation n + 6 > 12.

 \therefore The given statement is true.

 \therefore It's truth value is T.

Exercise 1.5 | Q 2.3 | Page 12

If $B = \{2, 3, 5, 6, 7\}$ determine the truth value of

 \exists n \in B, such that 2n + 2 < 4.

Solution: There is no n in B which satisfies 2n + 2 < 4.

 \therefore The given statement is false.

∴ It's truth value is F.

Exercise 1.5 | Q 2.4 | Page 12

If $B = \{2, 3, 5, 6, 7\}$ determine the truth value of

 \forall y \in B, such that y² is negative.

Solution: There is no y in B which satisfies $y^2 < 0$.

- \therefore The given statement is false.
- \therefore It's truth value is F.

Exercise 1.5 | Q 2.5 | Page 12

If $B = \{2, 3, 5, 6, 7\}$ determine the truth value of

 $\forall y \in B$, such that $(y - 5) \in N$

Solution: For y = 2, $y - 5 = 2 - 5 = -3 \notin N$.

 \therefore y = 2 does not satisfies the equation (y - 5) \in N.

 \therefore The given statement is false.

: It's truth value is F.

EXERCISE 1.6 [PAGE 16]

Exercise 1.6 | Q 1.1 | Page 16

Prepare truth tables for the following statement pattern.

 $p \rightarrow (\sim p \lor q)$

Solution:

 $p \rightarrow (\sim p \lor q)$

р	q	~p	~ p V q	p → (~ p ∨ q)
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Exercise 1.6 | Q 1.2 | Page 16

Prepare truth tables for the following statement pattern.

Solution: (~ p ∨ q) ∧ (~ p ∨ ~ q)

р	q	~p	~q	~p∨q	~pV~q	(~p∨q)∧(~p∨~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	Т	Т	Т

-	 —	т	т	т	–
F					

Exercise 1.6 | Q 1.3 | Page 16

Prepare truth tables for the following statement pattern.

 $(p \land r) \rightarrow (p \lor \sim q)$

Solution: $(p \land r) \rightarrow (p \lor \sim q)$

р	q	r	~q	p∧r	p∨~q	(p ∧ r) → (p ∨ ~ q)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	F	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	F	Т	Т

Exercise 1.6 | Q 1.4 | Page 16

Prepare truth tables for the following statement pattern.

(p ^ q) V ~ r

Solution: $(p \land q) \lor \sim r$

р	q	r	~r	p∧q	(p ∧ q) ∨ ~ r
Т	Т	Т	F	Т	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	Т	F	Т
F	Т	Т	F	F	F
F	Т	F	Т	F	Т

F	F	Т	F	F	F
F	F	F	Т	F	Т

Exercise 1.6 | Q 2.1 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]

Solution:

р	q	p∧q	~ (p ∧ q)	q ∨ [~ (p ∧ q)]
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

All the truth values in the last column are T. Hence, it is a **tautology**.

Exercise 1.6 | Q 2.2 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

 $(\sim q \land p) \land (p \land \sim p)$

Solution:

р	q	~p	~q	(~q∧p)	(р∧~р)	(~q∧p)∧(p∧~p)
Т	Т	F	F	F	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	F
F	F	Т	Т	F	F	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 2.3 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

 $(p \land \sim q) \to (\sim p \land \sim q)$

Solution:

р	q	~p	~q	p∧~q	~p∧~q	(p∧~q)→(~p∧~q)
Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	Т

The truth values in the last column are not identical. Hence, it is **contingency**.

Exercise 1.6 | Q 2.4 | Page 16

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

 $\sim p \rightarrow (p \rightarrow \sim q)$

Solution:

р	q	~p	~q	p→~q	~p→(p→~q)
Т	Т	F	F	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is tautology.

Exercise 1.6 | Q 3.1 | Page 16

Prove that the following statement pattern is a tautology.

 $(p \land q) \rightarrow q$

Solution:

р	q	p∧q	(p∧q)→q
Т	Т	Т	Т

Т	F	F	Т
F	т	F	Т
F	F	F	Т

All the truth values in the last column are T. Hence, it is tautology.

Exercise 1.6 | Q 3.2 | Page 16

Prove that the following statement pattern is a tautology.

 $(p \rightarrow q) \leftrightarrow (\thicksim q \rightarrow \thicksim p)$

Solution:

р	q	~p	~q	p→d	~q→~p	(p→q)↔(~q→~p)
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a **tautology**.

Exercise 1.6 | Q 3.3 | Page 16

Prove that the following statement pattern is a tautology.

 $({\sim}p \land {\sim}q) \to (p \to q)$

Solution:

р	q	~p	~q	~p∧~q	p→d	(~p∧~q)→(p→q)
Т	Т	F	F	F	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a tautology.

Exercise 1.6 | Q 3.4 | Page 16

Prove that the following statement pattern is a tautology.

 $(\sim p \lor \sim q) \leftrightarrow \sim (p \land q)$

Solution:

р	q	~p	~q	~pV~q	p∧q	~pV~q	(~pV~q↔~(p ∧ q)
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т

All the truth values in the last column are T. Hence, it is a **tautology**.

Exercise 1.6 | Q 4.1 | Page 16

Prove that the following statement pattern is a contradiction.

 $(p \lor q) \land (\sim p \land \sim q)$

Solution:

р	q	~p	~q	p∨q	~p∧~q	(p∨q)∧(~p∧~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 4.2 | Page 16

Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p

Solution:

р	q	~p	p∧q	(p∧q)∧~p
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	F	F

F	F	Т	F	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 4.3 | Page 16

Prove that the following statement pattern is a contradiction.

 $(p \land q) \land (\sim p \lor \sim q)$

Solution:

р	q	~p	~q	p∧q	~pV~q	(p∧q)∧(~p∨~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	Т	F
F	F	Т	Т	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 4.4 | Page 16

Prove that the following statement pattern is a contradiction.

$$(p \rightarrow q) \land (p \land \sim q)$$

Solution:

р	q	~q	p→d	p∧~q	(p→q)∧(p∧~q)
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	F	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Exercise 1.6 | Q 5.1 | Page 16

Show that the following statement pattern is contingency.

 $(p \land \neg q) \rightarrow (\neg p \land \neg q)$

Solution:

р	q	~p	~q	p∧~q	~p∧~q	(p∧~q)→(~p∧~q)
Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	Т

The truth values in the last column are not identical. Hence, it is **contingency**.

Exercise 1.6 | Q 5.2 | Page 16

Show that the following statement pattern is contingency.

 $(p \to q) \leftrightarrow (\thicksim p \lor q)$

Solution:

р	q	~p	p→q	~p∨q	(p→q)↔(~p∨q)
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

All the truth values in the last column are T. Hence, it is a tautology. Not contingency.

Exercise 1.6 | Q 5.3 | Page 16

Show that the following statement pattern is contingency.

 $p \land [(p \rightarrow \sim q) \rightarrow q]$

Solution:

р	q	~q	p→~q	(p→~q)→q	p∧[(p→~q)→q]
---	---	----	------	----------	--------------

Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	Т	Т	F
F	F	Т	Т	F	F

Truth values in the last column are not identical. Hence, it is contingency.

Exercise 1.6 | Q 5.4 | Page 16

Show that the following statement pattern is contingency.

 $(p \rightarrow q) \land (p \rightarrow r)$

Solution:

р	q	r	p→q	p→r	(p→q)∧(p→r)
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

The truth values in the last column are not identical. Hence, it is contingency.

Exercise 1.6 | Q 6.1 | Page 16

Using the truth table, verify

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Prove that the following pair of statement patterns is equivalent.

 $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	Т	Т	Т	Т

Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

The entries in columns 5 and 8 are identical.

 $\therefore p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Exercise 1.6 | Q 6.2 | Page 16

Using the truth table, verify

 $p \to (p \to q) \equiv \textbf{~} q \to (p \to q)$

Solution:

1	2	3	4	5	6
р	q	~q	p→q	p→(p→q)	~q→(p→q)
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

In the above truth table, entries in columns 5 and 6 are identical.

 $\therefore p \to (p \to q) \equiv \thicksim q \to (p \to q)$

Exercise 1.6 | Q 6.3 | Page 16

Using the truth table, verify

 $\textbf{\sim}(p \rightarrow \textbf{\sim}q) \equiv p \land \textbf{\sim} (\textbf{\sim} q) \equiv p \land q$

Solution:

1	2	3	4	5	6	7	8
р	q	~q	p→~q	~(p→~q)	~(~q)	p∧~(~q)	p∧q

Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	Т	F	F	F	F
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	F	F	F	F

In the above table, entries in columns 5, 7, and 8 are identical.

 $\therefore \sim (p \rightarrow \sim q) \equiv p \land \sim (\sim q) \equiv p \land q$

Exercise 1.6 | Q 6.4 | Page 16

Using the truth table, verify

 \sim (p \vee q) \vee (\sim p \wedge q) \equiv \sim p

Solution:

1	2	3	4	5	6	7
р	q	~p	(p∨q)	~(p∨q)	~p∧q	~(p∨q)∨(~p∧q)
Т	Т	F	Т	F	F	F
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	Т
F	F	Т	F	Т	F	Т

In the above truth table, the entries in columns 3 and 7 are identical.

 $\therefore \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$

Exercise 1.6 | Q 7.1 | Page 16

Using the truth table, verify

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Prove that the following pair of statement patterns is equivalent.

 $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т

Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

The entries in columns 5 and 8 are identical.

 $\therefore p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Exercise 1.6 | Q 7.2 | Page 16

Prove that the following pair of statement pattern is equivalent.

 $p \leftrightarrow q \text{ and } (p \rightarrow q) \land (q \rightarrow p)$

Solution:

1	2	3	4	5	6
р	q	p⇔q	p→d	q→p	(p→q)∧(q→p)
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

In the above table, entries in columns 3 and 6 are identical.

: Statement $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are equivalent.

Exercise 1.6 | Q 7.3 | Page 16

Prove that the following pair of statement pattern is equivalent.

 $p \rightarrow q \text{ and } \thicksim q \rightarrow \thicksim p \text{ and } \thicksim p \lor q$

Solution:

1	2	3	4	5	6	7
р	q	~p	~q	p→q	~q→~p	~p∨q
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	F

F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

In the above table, entries in columns 5, 6 and 7 are identical

: Statement $p \rightarrow q$ and $\sim q \rightarrow \sim p$ and $\sim p \lor q$ are equivalent.

Exercise 1.6 | Q 7.4 | Page 16

Prove that the following pair of statement pattern is equivalent.

~($p \land q$) and ~ $p \lor ~q$

Solution:

1	2	3	4	5	6	7
р	q	~p	~q	p∧q	~(p∧q)	~pV~q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

In the above table, entries in columns 6 and 7 are identical.

 \therefore Statement \sim (p \land q) and \sim p $\lor \sim$ q are equivalent.

EXERCISE 1.7 [PAGE 17]

Exercise 1.7 | Q 1.1 | Page 17

Write the dual of the following:

(p V q) V r

Solution: $(p \land q) \land r$

Exercise 1.7 | Q 1.2 | Page 17

Write the dual of the following:

 $\sim (p \lor q) \land [p \lor \sim (q \land \sim r)]$

Solution: \sim (p \land q) \lor [p \land \sim (q \lor \sim r)]

Exercise 1.7 | Q 1.3 | Page 17

Write the dual of the following:

 $p \lor (q \lor r) \equiv (p \lor q) \lor r$

Solution: $p \land (q \land r) \equiv (p \land q) \land r$

Exercise 1.7 | Q 1.4 | Page 17

Write the dual of the following:

 \sim (p \land q) \equiv \sim p \lor \sim q

Solution: \sim (p \lor q) \equiv \sim p \land \sim q

Exercise 1.7 | Q 2.1 | Page 17

Write the dual statement of the following compound statement.

13 is a prime number and India is a democratic country.

Solution: 13 is a prime number or India is a democratic country.

Exercise 1.7 | Q 2.2 | Page 17

Write the dual statement of the following compound statement. Karina is very good or everybody likes her.

Solution: Karina is very good and everybody likes her.

Exercise 1.7 | Q 2.3 | Page 17

Write the dual statement of the following compound statement. Radha and Sushmita cannot read Urdu.

Solution: Radha or Sushmita cannot read Urdu.

Exercise 1.7 | Q 2.4 | Page 17

Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.

Solution: A number is a real number or the square of the number is non-negative.

EXERCISE 1.8 [PAGE 21]

Exercise 1.8 | Q 1.1 | Page 21

Write the negation of the following statement.

All the stars are shining if it is night.

Solution: Let q : All stars are shining.

p: It is night.

The given statement in symbolic form is $p \rightarrow q$. It's negation is ~ $(p \rightarrow q) \equiv p \land ~q$

 \therefore The negation of a given statement is 'It is night and some stars are not shining'.

Exercise 1.8 | Q 1.2 | Page 21

Write the negation of the following statement.

 $\forall n \in N, n + 1 > 0$

Solution: $\exists n \in N$ such that $n + 1 \leq 0$.

Exercise 1.8 | Q 1.3 | Page 21

Write the negation of the following statement.

 $\exists n \in N$, $(n^2 + 2)$ is odd number.

Solution: $\forall n \in N$, $(n^2 + 2)$ is not odd number.

Exercise 1.8 | Q 1.4 | Page 21

Write the negation of the following statement.

Some continuous functions are differentiable.

Solution: All continuous functions are not differentiable.

Exercise 1.8 | Q 2.1 | Page 21

Using the rules of negation, write the negation of the following:

 $(p \rightarrow r) \land q$

Solution: ~ $[(p \rightarrow r) \land q] \equiv ~(p \rightarrow r) \lor ~q$ [Negation of conjunction] $\equiv (p \land ~r) \lor ~q$ [Negation of implication]

Exercise 1.8 | Q 2.2 | Page 21

Using the rules of negation, write the negation of the following:

 \sim (p V q) \rightarrow r

Solution: \sim [\sim (p \lor q) \rightarrow r] \equiv \sim (p \lor q) $\land \sim$ r[Negation of implication] \equiv (\sim p $\land \sim$ q) $\land \sim$ r[Negation of disjunction]

Exercise 1.8 | Q 2.3 | Page 21

Using the rules of negation, write the negation of the following:

 $\begin{aligned} (\sim p \land q) \land (\sim q \lor \sim r) \\ \textbf{Solution:} &\sim [(\sim p \land q) \land (\sim q \lor \sim r)] \\ &\equiv \sim (\sim p \land q) \lor \sim (\sim q \lor \sim r) \quad ... [Negation of conjunction] \\ &\equiv [\sim (\sim p) \lor \sim q] \lor [\sim (\sim q) \land \sim (\sim r)] \quad ... [Negation of conjunction and disjunction] \\ &\equiv (p \lor \sim q) \lor (q \lor r) \quad [Negation on negation] \end{aligned}$

Exercise 1.8 | Q 3.1 | Page 21

Write the converse, inverse, and contrapositive of the following statement.

If it snows, then they do not drive the car.

Solution: Let p : It snows. q : They do not drive the car.

 \therefore The given statement is $p \rightarrow q$.

Its converse is $q \rightarrow p$. If they do not drive the car then it snows.

Its inverse is $\sim p \rightarrow \sim q$. If it does not snow then they drive the car.

Its contrapositive is $\sim q \rightarrow \sim p$. If they drive the car then it does not snow.

Exercise 1.8 | Q 3.2 | Page 21

Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.

Solution: Let p : He studies. q : He will go to college.

 \therefore The given statement is $p \rightarrow q$.

Its converse is $q \rightarrow p$. If he will go to college then he studies.

Its inverse is $\sim p \rightarrow \sim q$. If he does not study then he will not go to college.

Its contrapositive is $\sim q \rightarrow \sim p$. If he will not go to college then he does not study.

Exercise 1.8 | Q 4.1 | Page 21

With proper justification, state the negation of the following.

$$\begin{split} (p \to q) \lor (p \to r) \\ \textbf{Solution:} &\sim [(p \to q) \lor (p \to r)] \\ &\equiv &\sim (p \to q) \land \sim (p \to r) \quad ... [\text{Negation of disjunction}] \\ &\equiv (p \land \sim q) \land (p \land \sim r) \quad [\text{Negation of implication}] \end{split}$$

Exercise 1.8 | Q 4.2 | Page 21

With proper justification, state the negation of the following.

$$\begin{array}{l} (p \leftrightarrow q) \lor (\sim q \rightarrow \sim r) \\ \textbf{Solution:} \sim [(p \leftrightarrow q) \lor (\sim q \rightarrow \sim r)] \\ \equiv \sim (p \leftrightarrow q) \land (\sim q \rightarrow \sim r) \qquad \dots [\text{Negation of disjunction}] \\ \equiv [(p \land \sim q) \lor (q \land \sim p)] \land \sim (\sim q \rightarrow \sim r) \qquad \dots [\text{Negation of double implication}] \\ \equiv [(p \land \sim q) \lor (q \land \sim p)] \land [\sim q \land \sim (\sim r)] \qquad \dots [\text{Negation of implication}] \\ \equiv [(p \land \sim q) \lor (q \land \sim p)] \land (\sim q \land r) \qquad \dots [\text{Negation of negation}] \end{array}$$

Exercise 1.8 | Q 4.3 | Page 21

With proper justification, state the negation of the following.

$$(p \rightarrow q) \land r$$

Solution: ~[$(p \rightarrow q) \land r$]
 $\equiv ~ (p \rightarrow q) \lor ~ r$ [Negation of conjunction]
 $\equiv (p \land ~q) \lor ~ r$ [Negation of implication]

EXERCISE 1.9 [PAGE 22]

Exercise 1.9 | Q 1.1 | Page 22

Without using truth table, show that

 $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$ Solution: L.H.S. $\equiv p \leftrightarrow q$ $\equiv (p \rightarrow q) \land (q \rightarrow p)$ $\equiv (\sim p \lor q) \land (\sim q \lor p)$ $\equiv [\sim p \land (\sim q \lor p)] \lor [q \land (\sim q \lor p)] \quad[Distributive law]$ $\equiv [(\sim p \land \sim q) \lor (\sim p \land p)] \lor [(q \land \sim q) \lor (q \land p)] \quad[Distributive Law]$ $\equiv [(\sim p \land \sim q) \lor F] \lor [F \lor (q \land p)] \quad[Complement Law]$

 $\equiv (\sim p \land \sim q) \lor (q \land p) \quad \dots [Identity Law]$ $\equiv (p \land q) \lor (\sim p \land \sim q) \quad \dots [Commutative Law]$ $\equiv R.H.S.$

Exercise 1.9 | Q 1.2 | Page 22

Without using truth table, show that

 $p \land [(\sim p \lor q) \lor \sim q] \equiv p$ Solution: L.H.S. $\equiv p \land [(\sim p \lor q) \lor \sim q]$ $\equiv p \land [(\sim p \lor (q \lor \sim q)] \qquad \dots [Associative law]$ $\equiv p \land (\sim p \lor T) \qquad \dots [Complement law]$ $\equiv p \land T \qquad \dots [Identity law]$ $\equiv p \qquad \dots [Identity law]$ $\equiv R.H.S.$

Exercise 1.9 | Q 1.3 | Page 22

Without using truth table, show that

 $\sim [(p \land q) \rightarrow \sim q] \equiv p \land q$ Solution: L.H.S. $\equiv \sim [(p \land q) \rightarrow \sim q]$ $\equiv (p \land q) \land \sim (\sim q) \quad \dots [Negation of implication]$ $\equiv (p \land q) \land q \quad \dots [Negation of a negation]$ $\equiv p \land (q \land q) \quad \dots [Associative law]$ $\equiv p \land q \qquad \dots [Identity law]$ $\equiv R.H.S.$

Exercise 1.9 | Q 1.4 | Page 22

Without using truth table, show that

≡ r ∨ ~(p ∧ q)	[Negation of negation]
≡ r ∨ (~p ∨ ~q)	[De Morgan's law]
≡ ~p ∨ (~q ∨ r)	[Commutative and associative law]
$\equiv \sim p \lor (q \rightarrow r)$	[$p \rightarrow q \equiv \sim p \lor q$]
\equiv (q \rightarrow r) \vee ~p	[Commutative law]
$\equiv \sim [\sim (q \rightarrow r)] \lor \sim p$	[Negation of negation]
$\equiv [\sim (q \rightarrow r)] \rightarrow \sim p$	$\dots [p \rightarrow q \equiv \sim p \lor q]$
= R.H.S.	

Exercise 1.9 | Q 1.5 | Page 22

Without using truth table, show that

 $\begin{array}{l} (p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r) \\ \textbf{Solution: L.H.S.} \\ \equiv (p \lor q) \rightarrow r \\ \equiv \sim (p \lor q) \lor r \qquad \dots [p \rightarrow q \rightarrow \sim p \lor q] \\ \equiv (\sim p \land \sim q) \lor r \qquad \dots [De \text{ Morgan's law}] \\ \equiv (\sim p \lor r) \land (\sim q \lor r) \qquad \dots [Distributive law] \\ \equiv (p \rightarrow r) \land (q \rightarrow r) \qquad \dots [p \rightarrow q \rightarrow \sim p \lor q] \\ = R.H.S. \end{array}$

Exercise 1.9 | Q 2.1 | Page 22

Using the algebra of statement, prove that $[p \land (q \lor r)] \lor [\sim r \land \sim q \land p] \equiv p$ Solution: L.H.S. $= [p \land (q \lor r)] \lor [\sim r \land \sim q \land p]$ $\equiv [p \land (q \lor r)] \lor [(\sim r \land \sim q) \land p] \qquad ...[Associative Law]$ $\equiv [p \land (q \lor r)] \lor [(\sim q \land \sim r) \land p] \qquad[Commutative Law]$ $\equiv [p \land (q \lor r)] \lor [\sim (q \lor r) \land p] \qquad[De Morgan's Law]$ $\equiv [p \land (q \lor r)] \lor [p \land \sim (q \lor r)] \qquad[Commutative Law]$ $\equiv p \land [(q \lor r) \lor \sim (q \lor r)] \qquad[Distributive Law]$ $\equiv p \land t \qquad[Complement Law]$

≡ p[Identity Law]

= R.H.S.

Exercise 1.9 | Q 2.2 | Page 22

Using the algebra of statement, prove that

 $(p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q) \equiv (p \lor \neg q)$ Solution: L.H.S. $= (p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$ $\equiv (p \land q) \lor [(p \land \neg q) \lor (\neg p \land \neg q)] \quad \dots [Associative Law]$ $\equiv (p \land q) \lor [(\neg q \land p) \lor (\neg q \land \neg p)] \quad \dots [Commutative Law]$ $\equiv (p \land q) \lor (\neg q \land (p \lor \neg p)] \quad \dots [Distributive Law]$ $\equiv (p \land q) \lor (\neg q \land t) \quad \dots [Complement Law]$ $\equiv (p \lor \neg q) \land (q \lor \neg q) \quad \dots [Distributive Law]$ $\equiv (p \lor \neg q) \land (q \lor \neg q) \quad \dots [Distributive Law]$ $\equiv (p \lor \neg q) \land (q \lor \neg q) \quad \dots [Distributive Law]$ $\equiv (p \lor \neg q) \land t \quad \dots [Complement Law]$ $\equiv p \lor \neg q \quad \dots [Identity Law]$ $\equiv p \lor \neg q \quad \dots [Identity Law]$

Exercise 1.9 | Q 2.3 | Page 22

Using the algebra of statement, prove that $(p \lor q) \land (\sim p \lor \sim q) \equiv (p \land \sim q) \lor (\sim p \land q)$ Solution: L.H.S. $= (p \lor q) \land (\sim p \lor \sim q)$ $\equiv [(p \lor q) \land \sim p] \lor [(p \lor q) \land \sim q]$[Distributive law] $\equiv [(p \land \sim p) \lor (q \land \sim p)] \lor [(p \land \sim q) \lor (q \land \sim q)]$[Distributive law] $\equiv [F \lor (q \land \sim p)] \lor [(p \land \sim q) \lor F]$[Complement law] $\equiv (q \land \sim p) \lor (p \land \sim q)$[Identity law] $\equiv (p \land \sim q) \lor (\sim p \land q)$[Commutative law] $\equiv R.H.S.$ EXERCISE 1.10 [PAGES 22 - 27] Exercise 1.10 | Q 1.1 | Page 27

Represent the truth of the following statement by the Venn diagram.

Some hardworking students are obedient.

Solution: Let U : The set of all students.

- H : The set of all hardworking students.
- O: The set of all obedient students.

The above Venn diagram represents truth of the given statement, $H \cap O \neq \phi$

Exercise 1.10 | Q 1.2 | Page 27

Represent the truth of the following statement by the Venn diagram.

No circles are polygons.

Solution: Let U : The set of all closed geometrical figures in plane.

- P : The set of all polygons
- C : The set of all circles.

The above Venn diagram represents truth of the given statement, $P \cap C \neq \phi$

Exercise 1.10 | Q 1.3 | Page 27

Represent the truth of the following statement by the Venn diagram.

All teachers are scholars and scholars are teachers.

Solution: Let U : The set of all human beings.

- T: The set of all teachers.
- S : The set of all scholars

The above Venn diagram represents truth of the given statement, T = S

Exercise 1.10 | Q 1.4 | Page 22

Represent the truth of the following statement by the Venn diagram.

If a quadrilateral is a rhombus, then it is a parallelogram.

Solution: Let U : The set of all quadrilaterals.

- P : The set of all parallelograms.
- R : The set of all rhombuses.

The above Venn diagram represents truth of the given statement, $R \subset P$.

Exercise 1.10 | Q 2.1 | Page 27

Draw a Venn diagram for the truth of the following statement.

Some share brokers are chartered accountants.

Solution: Let U : The set of all human beings.

- S : The set of all share brokers.
- C : The set of all chartered accountants.

The above Venn diagram represents the truth of the given statement i.e., $S \cap C \neq \phi$.

Exercise 1.10 | Q 2.2 | Page 27

Draw a Venn diagram for the truth of the following statement.

No wicket keeper is bowler, in a cricket team.

Solution: Let U : The set of all human beings. W : The set of all wicket keepers. B : The set of all bowlers.

The above Venn diagram represents the truth of the given statement i.e., $W \cap B = \varphi$.

Exercise 1.10 | Q 3.1 | Page 27

Represent the following statement by the Venn diagram.

Some non-resident Indians are not rich.

Solution: Let, U : The set of all human beings. N : The set of all non-resident Indians. R : The set of all rich people.

The above Venn diagram represents the truth of the given statement i.e., N - R $\neq \phi$

Exercise 1.10 | Q 3.2 | Page 27

Represent the following statement by the Venn diagram.

No circle is rectangle.

Solution: Let, U : The set of all geometrical figures.

C : The set of all circles.

R : The set of all rectangles.

The above Venn diagram represents the truth of the given statement i.e., $C \cap R = \varphi$.

Exercise 1.10 | Q 3.3 | Page 27

Represent the following statement by the Venn diagram.

If n is a prime number and $n \neq 2$, then it is odd.

Solution: Let, U : The set of all real numbers.

- P : The set of all prime numbers n and $n \neq 2$.
- O: The set of all odd numbers.

The above Venn diagram represents the truth of the given statement i.e., $P \subset O$.

MISCELLANEOUS EXERCISE 1 [PAGES 29 - 34]

Miscellaneous Exercise 1 | Q 1.01 | Page 29

Choose the correct alternative :

Which of the following is not a statement?

- 1. Smoking is injuries to health
- 2. 2 + 2 = 4
- 3. 2 is the only even prime number.
- 4. Come here

Solution: Come here

Miscellaneous Exercise 1 | Q 1.02 | Page 29

Choose the correct alternative :

Which of the following is an open statement?

1. x is a natural number.

- 2. Give answer a glass of water.
- 3. Wish you best of luck.
- 4. Good morning to all.

Solution: x is a natural number.

Miscellaneous Exercise 1 | Q 1.03 | Page 29

Choose the correct alternative :

Let $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$. Then, this law is known as.

1. commutative law

- 2. associative law
- 3. De-Morgan's law
- 4. distributive law

Solution: distributive law.

Miscellaneous Exercise 1 | Q 1.04 | Page 29

Choose the correct alternative :

The false statement in the following is

- 1. $p \land (\sim p)$ is contradiction
- 2. $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a contradiction.
- 3. ~ (~ p) \leftrightarrow p is a tautology
- 4. $p \lor (\sim p) \leftrightarrow p$ is a tautology

Solution: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a contradiction.

Miscellaneous Exercise 1 | Q 1.05 | Page 29

Choose the correct alternative :

For the following three statements p : 2 is an even number. q : 2 is a prime number. r : Sum of two prime numbers is always even. Then, the symbolic statement $(p \land q) \rightarrow \sim r$ means.

- 1. 2 is an even and prime number and the sum of two prime numbers is always even.
- 2. 2 is an even and prime number and the sum of two prime numbers is not always even.
- 3. If 2 is an even and prime number, then the sum of two prime numbers is not always even.
- 4. If 2 is an even and prime number, then the sum of two prime numbers is also even.

Solution: If 2 is an even and prime number, then the sum of two prime numbers is not always even.

Miscellaneous Exercise 1 | Q 1.06 | Page 30

Choose the correct alternative :

If p : He is intelligent.

q : He is strong

Then, symbolic form of statement "It is wrong that, he is intelligent or strong" is

- 1. ~p v ~ p
- 2. ~ $(p \land q)$
- 3. ∼ (p ∨ q)
- 4. $p \vee \sim q$

Solution: \sim (p v q)

Miscellaneous Exercise 1 | Q 1.07 | Page 30

Choose the correct alternative :

The negation of the proposition "If 2 is prime, then 3 is odd", is

- 1. If 2 is not prime, then 3 is not odd.
- 2. 2 is prime and 3 is not odd.
- 3. 2 is not prime and 3 is odd.
- 4. If 2 is not prime, then 3 is odd.

Solution: 2 is prime and 3 is not odd.

Miscellaneous Exercise 1 | Q 1.08 | Page 30

Choose the correct alternative :

The statement (~ $p \land q$) V~ q is

- 1. pvq
- 2. p∧q
- 3. ~ (p v q)
- 4. ~ (p ∧ q)

Solution: \sim (p \land q).

Miscellaneous Exercise 1 | Q 1.09 | Page 30

Choose the correct alternative :

Which of the following is always true?

- 1. $(p \rightarrow q) \equiv \sim q \rightarrow \sim p$
- 2. $\sim (p \lor q) \equiv \sim p \lor \sim q$
- 3. ~ $(p \rightarrow q) \equiv p \land \sim q$

4. $\sim (p \lor q) \equiv \sim p \land \sim q$

Solution: \sim (p \rightarrow q) \equiv p $\land \sim$ q.

Miscellaneous Exercise 1 | Q 1.1 | Page 30

Choose the correct alternative :

~ $(p \lor q) \lor (~ p \land q)$ is logically equivalent to

- 1. ~ p
- 2. p
- 3. q
- 4. ~ q

Solution: ~ p.

Miscellaneous Exercise 1 | Q 1.11 | Page 30

Choose the correct alternative :

If p and q are two statements then $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is

- 1. contradiction
- 2. tautology
- 3. Neither (i) not (ii)
- 4. None of the these

Solution: tautology.

Miscellaneous Exercise 1 | Q 1.12 | Page 30

Choose the correct alternative :

If p is the sentence 'This statement is false' then

- 1. truth value of p is T
- 2. truth value of p is F
- 3. p is both true and false
- 4. p is neither true nor false

Solution: p is neither true nor false

Miscellaneous Exercise 1 | Q 1.13 | Page 30

Choose the correct alternative :

Conditional $p \rightarrow q$ is equivalent to

1. $p \rightarrow \sim q$ 2. $\sim p \lor q$ 3. $\sim p \rightarrow \sim q$ 4. $p \lor \sim q$

Solution: ~p V q.

Miscellaneous Exercise 1 | Q 1.14 | Page 30

Choose the correct alternative :

Negation of the statement "This is false or That is true" is

- 1. That is true or This is false
- 2. That is true and This is false
- 3. That is true and That is false
- 4. That is false and That is true

Solution: That is true and That is false.

Miscellaneous Exercise 1 | Q 1.15 | Page 30

Choose the correct alternative :

If p is any statement then $(p \lor \sim p)$ is a

- 1. contingency
- 2. contradiction
- 3. tautology
- 4. None of them

Solution: tautology.

Miscellaneous Exercise 1 | Q 2.1 | Page 30

Fill in the blanks :

The statement $q \rightarrow p$ is called as the ———— of the statement $p \rightarrow q$.

Solution: The statement $q \rightarrow p$ is called as the <u>**Converse**</u> of the statement $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 2.2 | Page 30

Fill in the blanks :

Conjunction of two statement p and q is symbolically written as _____.

Solution: Conjunction of two statement p and q is symbolically written as $\underline{p \land q}$.

Miscellaneous Exercise 1 | Q 2.3 | Page 30

Fill in the blanks :

If $p \lor q$ is true then truth value of $\sim p \lor \sim q$ is ———.

Solution: If $p \lor q$ is true then truth value of $\sim p \lor \sim q$ is <u>F</u>.

Miscellaneous Exercise 1 | Q 2.4 | Page 30

Fill in the blanks :

Negation of "some men are animal" is _____.

Solution: Negation of "some men are animal" is No men are animals.

Miscellaneous Exercise 1 | Q 2.5 | Page 30

Fill in the blanks :

Truth value of if x = 2, then $x^2 = -4$ is _____.

Solution: Truth value of if x = 2, then $x^2 = -4$ is **F**.

Miscellaneous Exercise 1 | Q 2.6 | Page 30

Fill in the blanks :

Inverse of statement pattern $p \leftrightarrow q$ is given by ———.

Solution: Inverse of statement pattern $p \leftrightarrow q$ is given by $\underline{\sim p \rightarrow \sim q}$.

Miscellaneous Exercise 1 | Q 2.7 | Page 30

Fill in the blanks :

Solution: $p \leftrightarrow q$ is false when p and q have <u>different</u> truth values.

Miscellaneous Exercise 1 | Q 2.8 | Page 31

Fill in the blanks :

Let p : the problem is easy. r : It is not challenging then verbal form of $\sim p \rightarrow r$ is ———.

Solution: Let p : the problem is easy. r : It is not challenging then verbal form of $\sim p \rightarrow r$ is <u>If the problem is not easy them it is not challenging</u>.

Miscellaneous Exercise 1 | Q 2.9 | Page 31

Fill in the blanks :

Truth value of 2 + 3 = 5 if and only if -3 > -9 is _____.

Solution: Truth value of 2 + 3 = 5 if and only if -3 > -9 is <u>T</u>.

Miscellaneous Exercise 1 | Q 3.01 | Page 31

State whether the following statement is True or False :

Truth value of 2 + 3 < 6 is F.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.02 | Page 31

State whether the following statement is True or False :

There are 24 months in year is a statement.

- 1. True
- 2. False

Solution: True

Miscellaneous Exercise 1 | Q 3.03 | Page 31

State whether the following statement is True or False :

 $p \lor q$ has truth value F is both p and q has truth value F.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.04 | Page 31

State whether the following statement is True or False :

The negation of 10 + 20 = 30 is, it is false that $10 + 20 \neq 30$.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.05 | Page 31

State whether the following statement is True or False :

Dual of $(p \land \sim q) \lor t$ is $(p \lor \sim q) \lor C$.

- 1. True
- 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.06 | Page 31

State whether the following statement is True or False :

Dual of "John and Ayub went to the forest" is "John and Ayub went to the forest".

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 3.07 | Page 31

State whether the following statement is True or False :

"His birthday is on 29th February" is not a statement.

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 3.08 | Page 31

State whether the following statement is True or False :

- $x^2 = 25$ is true statement.
 - 1. True
 - 2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.09 | Page 31

State whether the following statement is True or False :

Truth value of $\sqrt{5}$ is not an irrational number is T.

1. True

2. False

Solution: False.

Miscellaneous Exercise 1 | Q 3.1 | Page 31

State whether the following statement is True or False :

 $p \wedge t = p$.

- 1. True
- 2. False

Solution: True.

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. Ice cream Sundaes are my favourite.

- 1. Is a statement
- 2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. x + 3 = 8; x is variable.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. Read a lot to improve your writing skill.

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. z is a positive number.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. $(a + b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. $(2 + 1)^2 = 9$.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. Why are you sad?

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. How beautiful the flower is!

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. The square of any odd number is even.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. All integers are natural numbers.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. If x is real number then $x2 \ge 0$.

1. Is a statement

2. Is not a statement

Solution: Is a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic. Do not come inside the room.

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.01 | Page 31

Solve the following :

State which of the following sentences are statements in logic.

What a horrible sight it was!

- 1. Is a statement
- 2. Is not a statement

Solution: Is not a statement

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The square of every real number is positive.

1. Is a statement

2. Is not a statement

Solution: It is a statement which is false. Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

Every parallelogram is a rhombus.

1. Is a statement

2. Is not a statement

Solution: It is a statement which is false. Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

 $a^2 - b^2 = (a + b) (a - b)$ for all $a, b \in R$.

1. Is a statement

2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

Please carry out my instruction.

- 1. Is a statement
- 2. Is not a statement

Solution: It is an imperative sentence. Hence, it is not a statement.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The Himalayas is the highest mountain range.

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

 $(x - 2) (x - 3) = x^2 - 5x + 6$ for all $x \in \mathbb{R}$.

1. Is a statement

2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

What are the causes of rural unemployment?

1. Is a statement

2. Is not a statement

Solution: It is an interrogative sentence. Hence, it's not a statement.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

0! = 1

- 1. Is a statement
- 2. Is not a statement

Solution: It is a statement which is true. Hence, its truth value is T.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

The quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$) always has two real roots.

1. Is a statement

2. Is not a statement

Solution: The quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$) always has two real roots is a statement.

Hence, its truth value is F.

Miscellaneous Exercise 1 | Q 4.02 | Page 31

Which of the following sentence is a statement? In case of a statement, write down the truth value.

What is happy ending?

- 1. Is a statement
- 2. Is not a statement

Solution: It is an interrogative sentence. Hence, it's not a statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The Sun has set and Moon has risen.

Solution: Let p : The sun has set. q : The moon has risen

The symbolic form is $p \land q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Mona likes Mathematics and Physics.

Solution: Let p : Mona likes Mathematics q : Mona likes Physics

The symbolic form is $p \land q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

3 is prime number if 3 is perfect square number.

Solution: Let p : 3 is a prime number. q : 3 is a perfect square number.

The symbolic form is $p \leftrightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Kavita is brilliant and brave.

Solution: Let p : Kavita is brilliant. q : Kavita is brave.

The symbolic form is $p \land q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If Kiran drives the car, then Sameer will walk.

Solution: Let p : Kiran drives the car.

q : Sameer will walk.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The necessary condition for existence of a tangent to the curve of the function is continuity.

Solution: The given statement can also be expressed as 'If the function is continuous, then the tangent to the curve exists'.

Let p : The function is continuous q : The tangent to the curve exists.

 $\therefore p \rightarrow q$ is the symbolic form of the given statement.

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

To be brave is necessary and sufficient condition to climb the Mount Everest.

Solution: Assuming the first statement p and second as q. Write the following statement in symbolic form.

To be brave is necessary and sufficient condition to climb the Mount Everest.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

 $x^3 + y^3 = (x + y)^3$ if xy = 0.

Solution: Let $p : x^3 + y^3 = (x + y)^3$

q: xy = 0

 \therefore p \leftrightarrow q is the symbolic form of the given statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The drug is effective though it has side effects.

Solution: The given statement can also be expressed as "The drug is effective and it has side effects"

Let p : The drug is effective. q : It has side effects.

 \div p \land q is the symbolic form of the given statement.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If a real number is not rational, then it must be irrational.

Solution: Let p : A real number is not rational. q : A real number must be irrational.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

It is not true that Ram is tall and handsome.

Solution: Let p : Ram is tall. q : Ram is handsome.

The symbolic form is \sim (p \land q).

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

Even though it is not cloudy, it is still raining.

Solution: Let p : it is cloudy. q : It is still raining.

The symbolic form is ~ $p \land q$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

It is not true that intelligent persons are neither polite nor helpful.

Solution: Let p : Intelligent persons are neither polite nor helpful

The symbolic form is $\sim p$.

Alternate method:

Let p : Intelligent persons are polite. q : Intelligent persons are helpful. The symbolic form is $\sim(\sim p \land \sim q)$.

Miscellaneous Exercise 1 | Q 4.03 | Page 32

Assuming the first statement p and second as q. Write the following statement in symbolic form.

If the question paper is not easy then we shall not pass.

Solution: Let p : The question paper is not easy. q : We shall not pass.

The symbolic form is $p \rightarrow q$.

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p : Proof is lengthy. q : It is interesting. Express the following statement in symbolic form.

Proof is lengthy and it is not interesting.

Solution: $p \land \sim q$

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p : Proof is lengthy. q : It is interesting. Express the following statement in symbolic form.

If proof is lengthy then it is interesting.

Solution: $p \rightarrow q$

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p : Proof is lengthy. q : It is interesting. Express the following statement in symbolic form.

It is not true that the proof is lengthy but it is interesting.

Solution: \sim (p \land q)

Miscellaneous Exercise 1 | Q 4.04 | Page 32

If p : Proof is lengthy. q : It is interesting. Express the following statement in symbolic form.

It is interesting iff the proof is lengthy.

Solution: $q \leftrightarrow p$

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

(p ∧ q) ∨ r

Solution: Sachin wins the match or he is the member of Rajya Sabha or Sachin is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

 $p \rightarrow r$

Solution: If Sachin wins the match then he is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

 $\sim p \vee q$

Solution: Sachin does not win the match or he is the member of Rajya Sabha.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

 $p \rightarrow (p \wedge r)$

Solution: If sachin wins the match, then he is the member of Rajyasabha or he is happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha.

r : Sachin is happy. Write the verbal statement of the following.

 $\mathsf{p}\to\mathsf{q}$

Solution: If Sachin wins the match then he is a member of Rajyasabha.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

 $(p \land q) \land \sim r$

Solution: Sachin wins the match and he is the member of Rajyasabha but he is not happy.

Miscellaneous Exercise 1 | Q 4.05 | Page 32

Let p : Sachin wins the match. q : Sachin is a member of Rajya Sabha. r : Sachin is happy. Write the verbal statement of the following.

 \sim (p v q) \wedge r

Solution: It is false that sachin wins the match or he is the member of Rajyasabha but he is happy.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

4 + 5 = 7 or 9 - 2 = 5

Solution: Let p : 4 + 5 = 7

q: 9 - 2 = 5

The truth values of p and q are F and F respectively. The given statement in symbolic form is $p \lor q$.

 $\therefore p \lor q \equiv F \lor F \equiv F$

 \therefore Truth value of the given statement is F.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

If 9 > 1 then $x^2 - 2x + 1 = 0$ for x = 1

Solution: Let p : 9 > 1 $q : x^2 - 2x + 1 = 0$ for x = 1

The truth values of p and q are T and T respectively. The given statement in symbolic form is $p \rightarrow q$.

 $\therefore p \rightarrow q \equiv T \rightarrow T \equiv T$

: Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

x + y = 0 is the equation of a straight line if and only if $y^2 = 4x$ is the equation of the parabola.

Solution: Let p : x + y = 0 is the equation of a straight line. $q : y^2 = 4x$ is the equation of the parabola.

The truth values of p and q are T and T respectively. The given statement in symbolic form is $p \leftrightarrow q$.

 $\therefore p \leftrightarrow q \equiv T \leftrightarrow T \equiv T$

 \therefore Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.06 | Page 32

Determine the truth value of the following statement.

It is not true that 2 + 3 = 6 or 12 + 3 = 5

Solution: Let p : 2 + 3 = 6

q: 12 + 3 = 5

The truth values of p and q are F and F respectively.

The given statement in symbolic form is \sim (p \vee q).

 $\therefore \sim (p \lor q) \equiv \sim (F \lor F) \equiv \sim F \equiv T$

: Truth value of the given statement is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

- p : Stock prices are high.
- q: Stocks are rising.

to be true, find the truth value of the following.

Stock prices are not high or stocks are rising.

Solution: Given that the truth values of both p and q are T.

The symbolic form of the given statement is $\sim p \lor q$.

 $\therefore \sim p \lor q \equiv \sim T \lor T \equiv F \lor T$

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement. p : Stock prices are high. q : Stocks are rising. to be true, find the truth value of the following.

Stock prices are high and stocks are rising if and only if stock prices are high.

Solution: The symbolic form of the given statement is

 $(p \land q) \leftrightarrow p.$

 $\therefore (p \land q) \leftrightarrow p \equiv (T \land T) \leftrightarrow T$

 $\equiv \mathsf{T} \leftrightarrow \mathsf{T}$

≡T

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement. p : Stock prices are high. q : Stocks are rising. to be true, find the truth value of the following.

If stock prices are high then stocks are not rising.

Solution: The Symbolic form of the given statement is $p \rightarrow \sim q$.

 $\therefore p \rightarrow \textbf{~} q \equiv T \rightarrow \textbf{~} T \equiv T \rightarrow F \equiv F$

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

- p : Stock prices are high.
- q : Stocks are rising.

to be true, find the truth value of the following.

It is false that stocks are rising and stock prices are high.

Solution: The symbolic form of the given statement is \sim (q \land p).

 $\therefore \sim (q \land p) \equiv \sim (T \land T) \equiv \sim T \equiv F$

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.07 | Page 32

Assuming the following statement.

p : Stock prices are high.

q : Stocks are rising.

to be true, find the truth value of the following.

Stock prices are high or stocks are not rising iff stocks are rising.

Solution: The symbolic form of the given statement is $(p \lor \neg q) \leftrightarrow q$.

 $\therefore (p \lor \neg q) \leftrightarrow q \equiv (T \lor \neg T) \leftrightarrow T$

 \equiv (T \lor F) \leftrightarrow T

 $\equiv \mathsf{T} \leftrightarrow \mathsf{T}$

$\equiv T$

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.08 | Page 32

Rewrite the following statement without using conditional -

(Hint : $p \rightarrow q \equiv \sim p \lor q$)

If price increases, then demand falls.

Solution: Let p : Prince increases. q : demand falls. The given statement is $p \rightarrow q$. But $p \rightarrow q \equiv \neg p \lor q$.

The given statement can be written as 'Price does not increase or demand falls'.

Miscellaneous Exercise 1 | Q 4.08 | Page 32

Rewrite the following statement without using conditional – (Hint : $p \rightarrow q \equiv \sim p \lor q$)

If demand falls, then price does not increase.

Solution: Let p : demand falls.

q : Price does not increase.

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv \sim p \lor q$.

∴ The given statement can be written as 'Demand does not fall or price does not increase'.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

 $(p \land q) \rightarrow \sim p.$

Solution: $(p \land q) \rightarrow \sim p \equiv (T \land T) \rightarrow \sim T$

 $\equiv \mathsf{T} \ \rightarrow \mathsf{F}$

≡ F.

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

```
p \leftrightarrow (q \rightarrow \sim p)
Solution: p \leftrightarrow (q \rightarrow \sim p) \equiv T \leftrightarrow (T \rightarrow \sim T)
\equiv T \leftrightarrow (T \rightarrow F)
\equiv T \leftrightarrow F
\equiv F
```

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

CLICK HERE

»

```
\begin{array}{l} (p \land \sim q) \lor (\sim p \land q) \\ \textbf{Solution:} \ (p \land \sim q) \lor (\sim p \land q) \equiv (T \land \sim T) \lor (\sim T \land T) \\ \equiv (T \land F) \lor (F \land T) \\ \equiv F \lor F \end{array}
```

≡ F

Hence, truth value is F.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

```
\sim (p \land q) \rightarrow \sim (q \land p)
Solution: \sim (p \land q) \rightarrow \sim (q \land p) \equiv \sim (T \land T) \rightarrow \sim (T \land T)
\equiv \sim T \rightarrow \sim T
\equiv F \rightarrow F
\equiv T
```

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.09 | Page 32

If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.

```
\sim [(p \to q) \leftrightarrow (p \land \sim q)]
Solution: \sim [(p \to q) \leftrightarrow (p \land \sim q)] \equiv \sim [(T \to T) \leftrightarrow (T \land \sim T)]
\equiv \sim [T \leftrightarrow (T \land F)]
\equiv \sim (T \leftrightarrow F)
\equiv \sim F
\equiv T
Hence, to the value is T
```

Hence, truth value is T.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

If $\triangle ABC$ is not equilateral, then it is not equiangular.

Solution: Let $p : \Delta ABC$ is not equilateral. $q : \Delta ABC$ is not equiangular.

The given statement is $p \rightarrow q$.

Its negation is \sim (p \rightarrow q) \equiv p $\land \sim$ q

 \therefore The negation of given statement is ' Δ ABC is not equilateral and it is equiangular'.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

Ramesh is intelligent and he is hard working.

Solution: Let p : Ramesh is intelligent. q : Ramesh is hard working. The given statement is $p \land q$.

Its negation is $\sim (p \land q) \equiv \sim p \lor \sim q$

 \therefore The negation of the given statement is 'Ramesh is not intelligent or he is not hardworking.'

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

An angle is a right angle if and only if it is of measure 90°.

Solution: Let p : An angle is a right angle. q : An angle is of measure 90°.

The given statement is $p \leftrightarrow q$.

Its negation is \sim (p \leftrightarrow q) \equiv (p $\wedge \sim$ q) \vee (q $\wedge \sim$ p)

 \therefore The negation of the given statement is 'An angle is a right angle and it is not of measure 90° or an angle is of measure 90° and it is not a right angle.'

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

Kanchanganga is in India and Everest is in Nepal.

Solution: Let p : Kanchanganga is in India. q : Everest is in Nepal. The given statement is $p \land q$.

Its negation is $\sim (p \land q) \equiv \sim p \lor \sim q$.

The negation of a given statement is 'Kanchanganga is not in India or Everest is not in Nepal'.

Miscellaneous Exercise 1 | Q 4.1 | Page 32

Write the negation of the following.

If $x \in A \cap B$, then $x \in A$ and $x \in B$.

Solution: Let $p : x \in A \cap B$

 $q: x \in A$

 $r: x \in B$

The given statement is $p \rightarrow (q \land r)$.

Its negation is ~[p \rightarrow (q \land r)], and

 $\sim [p \rightarrow (q \land r)] \equiv p \land \sim (q \land r) \equiv p \land \sim q \lor \sim r$

∴ The negation of given statement is $x \in A \cap B$ and $x \notin A$ or $x \notin B$.

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

 $(p \land \sim q) \leftrightarrow (q \rightarrow p)$

Solution:

р	q	~q	p∧~q	q→p	(p∧~q)↔(q→p)
Т	Т	F	F	Т	F
Т	F	Т	Т	Т	Т
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

 $(\sim p \lor q) \land (\sim p \land \sim q)$

Solution:

р	q	~p	~q	~p∨q	~p^~q	(~p∨q)∧(~p∧~q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

 $(p \land r) \rightarrow (p \lor \neg q)$

р	q	r	~q	p∧r	p∨~q	(p∧r)→(p∨~q)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	F	Т	Т

Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	F	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	F	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

 $(p \lor r) \rightarrow \sim (q \land r)$

Solution:

р	q	r	p∨r	q∧r	~q∧r)	(p∨r)→~(q ∧ r)
Т	Т	Т	Т	Т	F	F
Т	Т	F	Т	F	Т	Т
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	Т	F	F
F	Т	F	F	F	Т	Т
F	F	Т	Т	F	Т	Т
F	F	F	F	F	Т	Т

Miscellaneous Exercise 1 | Q 4.11 | Page 33

Construct the truth table for the following statement pattern.

 $(p \lor \sim q) \rightarrow (r \land p)$

р	q	r	~q	p∨~q	r∧p	(p∨~q)→(r∧p)
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т

F	Т	F	F	F	F	Т
F	F	Т	Т	Т	F	F
F	F	F	Т	Т	F	F

Miscellaneous Exercise 1 | Q 4.12 | Page 33

What is tautology? What is contradiction?

Show that the negation of a tautology is a contradiction and the negation of a

contradiction is a tautology.

Solution:

• Tautology:

A statement pattern having truth value always T, irrespective of the truth values of its component statement is called a tautology.

• Contradiction:

A statement pattern having truth value always F, irrespective of the truth values of its component statement is called a contradiction.

Let Statement p tautology. Consider, truth table

р	~ p
Т	F

i.e., negation of tautology is contradiction.

Let statement of contradiction. Consider, truth table

q	~ q
F	Т

i.e., negation of contradiction is tautology.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

 $[(p \land q) \lor (\sim p)] \lor [p \land (\sim q)]$

р	q	~p	~q	p∧q	(p∧q)∨(~p)	p∧~q	[(p∧q)∨(~p)]∨[p∧(~q)]
Т	Т	F	F	Т	Т	F	Т
Т	F	F	Т	F	F	Т	Т
F	Т	Т	F	F	Т	F	Т
F	F	Т	Т	F	Т	F	Т

All the truth values in the last column are T. Hence, it is a **tautology**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

 $[({\sim}p \land q) \land (q \land r)] \lor ({\sim}q)$

Solution:

р	q	r	~p	~q	~p∧q	q∧r	(~p∧q)∧(q∧r)	[(~p∧q)∧(q∧r)]∨(~q)
Т	Т	Т	F	F	F	Т	F	F
Т	Т	F	F	F	F	F	F	F
Т	F	Т	F	Т	F	F	F	Т
Т	F	F	F	Т	F	F	F	Т
F	Т	Т	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F	F
F	F	Т	Т	Т	F	F	F	Т
F	F	F	Т	Т	F	F	F	Т

Truth values in the last column are not identical. Hence, it is **contingency**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

 $[{\sim}(p \lor q) \to p] \leftrightarrow [({\sim}p) \land ({\sim}q)]$

Solution:

р	q	~p	~q	p∨q	~(p∨q)	~(p∨q)→p	(~p)∧(~q)	[~(p∨q)→p]↔[(~p)∧(~q)]
Т	Т	F	F	Т	F	Т	F	F
Т	F	F	Т	Т	F	Т	F	F
F	Т	Т	F	Т	F	Т	F	F
F	F	Т	Т	F	Т	F	Т	F

All the truth values in the last column are F. Hence, it is a **contradiction**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

 $[{\sim}(p \land q) \to p] \leftrightarrow [({\sim}p) \land ({\sim}q)]$

Solution:

р	q	~p	~q	p∧q	~(p∧q)	~(p∧q)→p	(~p)∧(~q)	[~(p∧q)→p]↔[(~p)∧(~q)]
Т	Т	F	F	Т	F	Т	F	F
Т	F	F	Т	F	Т	Т	F	F
F	Т	Т	F	F	Т	F	F	Т
F	F	Т	Т	F	Т	F	Т	F

Truth values in the last column are not identical. Hence, it is **contingency**.

Miscellaneous Exercise 1 | Q 4.13 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

 $[\mathsf{P} \to (\mathsf{\sim}\mathsf{q} \lor r)] \leftrightarrow \mathsf{\sim}[\mathsf{p} \to (\mathsf{q} \to r)]$

Solution:

р	q	r	~q	~q∨r	q→r	p→(q→r)	P→(~q∨r)	[~ [p →(q → r)]	[P→(~q∨r)]↔~[p
									ightarrow (q $ ightarrow$ r)]
Т	Т	Т	F	Т	Т	Т	Т	F	F
Т	Т	F	F	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	Т	Т	F	F
Т	F	F	Т	Т	Т	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	F	F
F	Т	F	F	F	F	Т	Т	F	F
F	F	Т	Т	Т	Т	Т	Т	F	F
F	F	F	Т	Т	Т	Т	Т	F	F

All the truth values in the last column are F. Hence, it is **contradiction**.

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q∨r	p∧(q∨r)	p∧q	p∧r	(p∧q)∨(p∧r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

In the above truth table, the entries in columns 5 and 8 are identical.

 $\therefore p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

 $[\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$

1	2	3	4	5	6	7
р	q	r	p∨q	~(p∨q)	[~(p∨q)∨(p∨q)]	[~(p∨q)∨(p∨q)]∧r
Т	Т	Т	Т	F	Т	Т
Т	Т	F	Т	F	Т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	F	Т	Т
F	Т	F	Т	F	Т	F

F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	F

In the above truth table, the entries in columns 3 and 7 are identical.

 $\therefore [\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

 $p \land (\sim p \lor q) \equiv p \land q$

Solution:

1	2	3	4	5	6
р	q	~p	~p∨q	p∧(~p∨q)	p∧d
Т	Т	F	Т	Т	Т
Т	F	F	F	F	F
F	Т	Т	Т	F	F
F	F	Т	Т	F	F

In the above truth table, the entries in columns 5 and 6 are identical.

 $\therefore p \land (\sim p \lor q) \equiv p \land q$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

 $p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p)$

Solution:

1	2	3	4	5	6	7	8	9	10
р	q	~p	~q	p⇔q	p∧~q	~(p∧~q)	(q∧~p)	~(q∧~p)	~(p∧~q)∧~(q ∧ ~p)
Т	Т	F	F	Т	F	Т	F	Т	Т
Т	F	F	Т	F	Т	F	F	Т	F

F	Т	Т	F	F	F	Т	Т	F	F
F	F	Т	Т	Т	F	Т	F	Т	Т

In the above truth table, the entries in columns 5 and 10 are identical.

 $\therefore p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p)$

Miscellaneous Exercise 1 | Q 4.14 | Page 33

Using the truth table, prove the following logical equivalence.

 $\sim p \land q \equiv [(p \lor q)] \land \sim p$

Solution:

r			1		
1	2	3	4	5	6
р	q	~p	~p∧q	(p∨q)	(p∨q)∧~p
Т	Т	F	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	F	F	F

In the above truth table, the entries in columns 4 and 6 are identical.

 $\therefore ~ p \land q \equiv [(p \lor q)] \land ~ p$

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.

Solution: Let p : 2 + 5 = 10 q : 4 + 10 = 20

 \therefore The given statement is $p \rightarrow q$.

Its converse is $q \rightarrow p$. If 4 + 10 = 20, then 2 + 5 = 10

Its inverse is $\sim p \rightarrow \sim q$. If 2 + 5 \neq 10 then 4 + 10 \neq 20.

Its contrapositive is $\sim q \rightarrow \sim p$. If 4 + 10 \neq 20 then 2 + 5 \neq 10.

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.

Solution: Let p : A man is bachelor. q : A man is happy.

 \therefore The given statement is $p \rightarrow q$.

Its converse is $q \rightarrow p$. If a man is happy then he is bachelor.

Its inverse is $\sim p \rightarrow \sim q$. If a man is not bachelor then he is not happy.

Its contrapositive is $\sim q \rightarrow \sim p$. If a man is not happy then he is not bachelor.

Miscellaneous Exercise 1 | Q 4.15 | Page 33

Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.

Solution: Let p : I do not work hard. q : I do not prosper.

 \therefore The given statement is $p \rightarrow q$.

Its converse is $q \rightarrow p$. If I do not prosper then I do not work hard.

Its inverse is $\sim p \rightarrow \sim q$. If I work hard then I prosper.

Its contrapositive is $\sim q \rightarrow \sim p$. If I prosper then I work hard.

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

 $(p \land \neg q) \lor (\neg p \land q) \equiv (p \lor q) \land \neg (p \land q)$

Solution: $(p \lor \neg q) \land (\neg p \lor q) \equiv (p \land q) \lor \neg (p \lor q)$

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

 $p \lor (q \lor r) \equiv \sim [(p \land q) \lor (r \lor s)]$

Solution: $p \land (q \land r) \equiv \sim [(p \lor q) \land (r \land s)]$

Miscellaneous Exercise 1 | Q 4.16 | Page 33

State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.

Solution: 2 is even number and 9 is a perfect square.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If a quadrilateral is rhombus then it is not a square.

Solution: Let p : A quadrilateral is rhombus.

q : A quadrilateral is not a square.

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv \sim p \lor q$.

 \therefore The given statement can be written as 'A quadrilateral is not a rhombus or it is not a square'.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If 10 - 3 = 7 then $10 \times 3 \neq 30$.

Solution: Let p : 10 - 3 = 7

q : 10 × 3 ≠ 30

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv \sim p \lor q$.

∴ The given statement can be written as '10 - $3 \neq 7$ or $10 \times 3 \neq 30$ '.

Miscellaneous Exercise 1 | Q 4.17 | Page 33

Rewrite the following statement without using the connective 'If ... then'.

If it rains then the principal declares a holiday.

Solution: Let p : It rains.

q : The principal declares a holiday.

The given statement is $p \rightarrow q$.

But $p \rightarrow q \equiv \sim p \lor q$.

 \therefore The given statement can be written as 'It does not rain or the principal declares a holiday'.

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

 $(\sim p \land q) \lor (p \land \sim q) \lor (\sim p \land \sim q)$

Solution: $(\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

 $(p \land q) \land r \equiv p \land (q \land r)$

Solution: $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

 $p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$

Solution: $p \land (q \lor r) \equiv (p \land q) \lor (q \land r)$

Miscellaneous Exercise 1 | Q 4.18 | Page 33

Write the dual of the following.

 \sim (p \lor q) \equiv \sim p \land \sim q

Solution: \sim (p \land q) \equiv \sim p $\lor \sim$ q

Miscellaneous Exercise 1 | Q 4.19 | Page 33

Consider the following statements.

i. If D is dog, then D is very good.

ii. If D is very good, then D is dog.

iii. If D is not very good, then D is not a dog.

iv. If D is not a dog, then D is not very good. Identify the pairs of statements having the same meaning. Justify.

Solution: Let p : D is dog. q : D is very good. Then the given statement in the symbolic form is i. $p \rightarrow q$

ii. $q \rightarrow p$ iii. $\sim q \rightarrow \sim p$ iv. $\sim p \rightarrow \sim q$

Since a statement and its contrapositive are equivalent, statements (i) and (iii) have the same meaning.

Since converse and inverse of a compound statement are equivalent, statements (ii) and (iv) have same meaning.

Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

All men are mortal.

Solution: U : The set of all human being A : The set of all men B : The set of all mortal

The above Venn diagram represents the truth of the given statement, i.e. $A \subset B$.

Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

Some persons are not politician.

Solution: U : The set of all human beings.

- X : The set of all persons.
- Y: The set of all politician

The above Venn diagram represents the truth of the given statement, i.e. Y - X $\neq \Phi$

Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.

Solution: U : The set of all human beings.

- M : The set of all members of the present Indian cricket.
- C : The set of all committed members of the present Indian cricket.

The above Venn diagram represents the truth of the given statement, i.e. C - M = Φ

Miscellaneous Exercise 1 | Q 4.2 | Page 33

Express the truth of the following statement by the Venn diagram.

No child is an adult.

Solution: U : Set of all human beings.

- C : Set of all child.
- A : Set of all Adult.

The above Venn diagram represents the truth of the given statement, i.e. $C \cap A = \Phi$

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.

 $\exists x \in A$, such that 3x + 2 > 9

Solution: For x = 3, 3x + 2 = 3(3) + 2 = 9 + 2 = 11 > 9

 \therefore x = 3 satisfies the equation 3x + 2 > 9.

- \therefore The given statement is true.
- \therefore Its truth value is T.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.

 $\forall x \in A, x^2 < 18.$

Solution: For x = 5, x² = 5² = 25 < 18

 \therefore x = 5 does not satisfies the equation x² < 18.

 \therefore The given statement is false.

: Its truth value is F.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.

 $\exists x \in A$, such that x + 3 < 11.

Solution: For x = 2, x + 3 = 2 + 3 = 5 < 11.

- \therefore x = 2 satisfies the equation x + 3 < 11.
- \therefore The given statement is true.

 \therefore Its truth value is T.

Miscellaneous Exercise 1 | Q 4.21 | Page 34

If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.

 $\forall x \in A, x^2 + 2 \ge 5.$

Solution: There is no x in A which satisfies $x^2 + 2 \ge 5$.

- \therefore The given statement is false.
- : Its truth value is F.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

7 is prime number and Tajmahal is in Agra.

Solution: Let p : 7 is prime number. q : Tajmahal is in Agra.

The given statement in symbolic form is $p \land q$.

Its negation is $\sim (p \land q) \equiv \sim p \lor \sim q$.

.: The negation of given statement is '7 is not prime number or Tajmahal is not in Agra.'

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

10 > 5 and 3 < 8 **Solution:** Let p : 10 > 5. q : 3 < 8. The given statement in symbolic form is $p \land q$. Its negation is $\sim(p \land q) \equiv \sim p \lor \sim q$.

∴ The negation of given statement is '10 ≤ 5 or $3 \ge 8$.'

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

I will have tea or coffee.

Solution: Let p : I will have tea. q : I will have coffee.

The given statement in symbolic form is $p \lor q$.

Its negation is \sim (p \vee q) $\equiv \sim$ p $\wedge \sim$ q.

 \div The negation of given statement is 'I will not have tea and coffee'.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

 $\forall n \in N, n + 3 > 9.$

Solution: $\exists n \in N$ such that $n + 3 \leq 9$.

Miscellaneous Exercise 1 | Q 4.22 | Page 34

Write the negation of the following statement.

 $\exists n \in A$, such that x + 5 < 11.

Solution: $\forall x \in A, x + 5 \le 11$

